p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.48C23, C4.582+ 1+4, C8⋊D4⋊37C2, C8⋊9D4⋊15C2, C4⋊C4.366D4, C4.Q16⋊35C2, (C2×D4).170D4, Q8⋊5D4.3C2, C2.49(Q8○D8), Q16⋊C4⋊22C2, D4.7D4⋊43C2, C8.18D4⋊38C2, C4⋊C8.102C22, C4⋊C4.409C23, (C2×C4).505C24, (C2×C8).188C23, Q8.23(C4○D4), C22⋊Q16⋊31C2, Q8.D4⋊41C2, C22⋊C4.166D4, C23.324(C2×D4), C4⋊Q8.150C22, C4.Q8.56C22, C8⋊C4.43C22, (C4×D4).158C22, (C2×D4).233C23, C4⋊D4.83C22, C22⋊C8.80C22, (C2×Q16).84C22, (C2×Q8).218C23, (C4×Q8).157C22, C2.141(D4⋊5D4), C2.D8.119C22, C22⋊Q8.81C22, D4⋊C4.71C22, C23.38D4⋊13C2, C23.24D4⋊18C2, C23.20D4⋊34C2, C23.19D4⋊33C2, (C22×C8).308C22, (C2×SD16).55C22, C4.4D4.65C22, C22.765(C22×D4), C2.85(D8⋊C22), (C22×C4).1149C23, C22.50C24⋊5C2, Q8⋊C4.161C22, (C22×Q8).343C22, C42.28C22⋊15C2, C42⋊C2.189C22, (C2×M4(2)).113C22, C4.230(C2×C4○D4), (C2×C4).602(C2×D4), (C2×C4○D4).209C22, SmallGroup(128,2045)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.48C23
G = < a,b,c,d,e | a4=b4=1, c2=a2, d2=e2=b2, ab=ba, cac-1=eae-1=a-1, dad-1=ab2, cbc-1=dbd-1=b-1, be=eb, dcd-1=bc, ece-1=a2c, ede-1=b2d >
Subgroups: 360 in 190 conjugacy classes, 86 normal (84 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C8⋊C4, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊C8, C4.Q8, C2.D8, C42⋊C2, C4×D4, C4×D4, C4×Q8, C4×Q8, C4⋊D4, C4⋊D4, C22⋊Q8, C22⋊Q8, C4.4D4, C4.4D4, C42⋊2C2, C4⋊Q8, C22×C8, C2×M4(2), C2×SD16, C2×Q16, C22×Q8, C2×C4○D4, C23.24D4, C23.38D4, C8⋊9D4, Q16⋊C4, C22⋊Q16, D4.7D4, Q8.D4, C8.18D4, C8⋊D4, C4.Q16, C23.19D4, C23.20D4, C42.28C22, Q8⋊5D4, C22.50C24, C42.48C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, D4⋊5D4, D8⋊C22, Q8○D8, C42.48C23
Character table of C42.48C23
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 8A | 8B | 8C | 8D | 8E | 8F | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | -2 | 2 | 0 | -2 | -2 | 2 | 2 | 0 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | 2 | 2 | -2 | 0 | -2 | -2 | -2 | -2 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | -2 | 2 | 2 | 0 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | -2i | 0 | 0 | 2 | 0 | 2i | -2 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 2i | 0 | 0 | 2 | 0 | -2i | -2 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | -2i | 0 | 0 | -2 | 0 | 2i | 2 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ24 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 2i | 0 | 0 | -2 | 0 | -2i | 2 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ25 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
ρ26 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | symplectic lifted from Q8○D8, Schur index 2 |
ρ27 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | symplectic lifted from Q8○D8, Schur index 2 |
ρ28 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D8⋊C22 |
ρ29 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D8⋊C22 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 42 49 12)(2 43 50 9)(3 44 51 10)(4 41 52 11)(5 31 40 56)(6 32 37 53)(7 29 38 54)(8 30 39 55)(13 20 46 21)(14 17 47 22)(15 18 48 23)(16 19 45 24)(25 59 33 62)(26 60 34 63)(27 57 35 64)(28 58 36 61)
(1 37 3 39)(2 40 4 38)(5 52 7 50)(6 51 8 49)(9 56 11 54)(10 55 12 53)(13 36 15 34)(14 35 16 33)(17 57 19 59)(18 60 20 58)(21 61 23 63)(22 64 24 62)(25 47 27 45)(26 46 28 48)(29 43 31 41)(30 42 32 44)
(1 21 49 20)(2 17 50 22)(3 23 51 18)(4 19 52 24)(5 35 40 27)(6 28 37 36)(7 33 38 25)(8 26 39 34)(9 47 43 14)(10 15 44 48)(11 45 41 16)(12 13 42 46)(29 59 54 62)(30 63 55 60)(31 57 56 64)(32 61 53 58)
(1 24 49 19)(2 23 50 18)(3 22 51 17)(4 21 52 20)(5 58 40 61)(6 57 37 64)(7 60 38 63)(8 59 39 62)(9 48 43 15)(10 47 44 14)(11 46 41 13)(12 45 42 16)(25 30 33 55)(26 29 34 54)(27 32 35 53)(28 31 36 56)
G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,42,49,12)(2,43,50,9)(3,44,51,10)(4,41,52,11)(5,31,40,56)(6,32,37,53)(7,29,38,54)(8,30,39,55)(13,20,46,21)(14,17,47,22)(15,18,48,23)(16,19,45,24)(25,59,33,62)(26,60,34,63)(27,57,35,64)(28,58,36,61), (1,37,3,39)(2,40,4,38)(5,52,7,50)(6,51,8,49)(9,56,11,54)(10,55,12,53)(13,36,15,34)(14,35,16,33)(17,57,19,59)(18,60,20,58)(21,61,23,63)(22,64,24,62)(25,47,27,45)(26,46,28,48)(29,43,31,41)(30,42,32,44), (1,21,49,20)(2,17,50,22)(3,23,51,18)(4,19,52,24)(5,35,40,27)(6,28,37,36)(7,33,38,25)(8,26,39,34)(9,47,43,14)(10,15,44,48)(11,45,41,16)(12,13,42,46)(29,59,54,62)(30,63,55,60)(31,57,56,64)(32,61,53,58), (1,24,49,19)(2,23,50,18)(3,22,51,17)(4,21,52,20)(5,58,40,61)(6,57,37,64)(7,60,38,63)(8,59,39,62)(9,48,43,15)(10,47,44,14)(11,46,41,13)(12,45,42,16)(25,30,33,55)(26,29,34,54)(27,32,35,53)(28,31,36,56)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,42,49,12)(2,43,50,9)(3,44,51,10)(4,41,52,11)(5,31,40,56)(6,32,37,53)(7,29,38,54)(8,30,39,55)(13,20,46,21)(14,17,47,22)(15,18,48,23)(16,19,45,24)(25,59,33,62)(26,60,34,63)(27,57,35,64)(28,58,36,61), (1,37,3,39)(2,40,4,38)(5,52,7,50)(6,51,8,49)(9,56,11,54)(10,55,12,53)(13,36,15,34)(14,35,16,33)(17,57,19,59)(18,60,20,58)(21,61,23,63)(22,64,24,62)(25,47,27,45)(26,46,28,48)(29,43,31,41)(30,42,32,44), (1,21,49,20)(2,17,50,22)(3,23,51,18)(4,19,52,24)(5,35,40,27)(6,28,37,36)(7,33,38,25)(8,26,39,34)(9,47,43,14)(10,15,44,48)(11,45,41,16)(12,13,42,46)(29,59,54,62)(30,63,55,60)(31,57,56,64)(32,61,53,58), (1,24,49,19)(2,23,50,18)(3,22,51,17)(4,21,52,20)(5,58,40,61)(6,57,37,64)(7,60,38,63)(8,59,39,62)(9,48,43,15)(10,47,44,14)(11,46,41,13)(12,45,42,16)(25,30,33,55)(26,29,34,54)(27,32,35,53)(28,31,36,56) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,42,49,12),(2,43,50,9),(3,44,51,10),(4,41,52,11),(5,31,40,56),(6,32,37,53),(7,29,38,54),(8,30,39,55),(13,20,46,21),(14,17,47,22),(15,18,48,23),(16,19,45,24),(25,59,33,62),(26,60,34,63),(27,57,35,64),(28,58,36,61)], [(1,37,3,39),(2,40,4,38),(5,52,7,50),(6,51,8,49),(9,56,11,54),(10,55,12,53),(13,36,15,34),(14,35,16,33),(17,57,19,59),(18,60,20,58),(21,61,23,63),(22,64,24,62),(25,47,27,45),(26,46,28,48),(29,43,31,41),(30,42,32,44)], [(1,21,49,20),(2,17,50,22),(3,23,51,18),(4,19,52,24),(5,35,40,27),(6,28,37,36),(7,33,38,25),(8,26,39,34),(9,47,43,14),(10,15,44,48),(11,45,41,16),(12,13,42,46),(29,59,54,62),(30,63,55,60),(31,57,56,64),(32,61,53,58)], [(1,24,49,19),(2,23,50,18),(3,22,51,17),(4,21,52,20),(5,58,40,61),(6,57,37,64),(7,60,38,63),(8,59,39,62),(9,48,43,15),(10,47,44,14),(11,46,41,13),(12,45,42,16),(25,30,33,55),(26,29,34,54),(27,32,35,53),(28,31,36,56)]])
Matrix representation of C42.48C23 ►in GL6(𝔽17)
0 | 16 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 0 |
0 | 0 | 13 | 4 | 13 | 8 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 13 | 0 | 13 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 1 | 16 | 1 | 15 |
0 | 0 | 1 | 0 | 1 | 16 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 7 | 4 | 13 |
0 | 0 | 7 | 11 | 0 | 4 |
0 | 0 | 7 | 6 | 0 | 16 |
0 | 0 | 10 | 13 | 10 | 13 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 0 |
0 | 0 | 0 | 4 | 13 | 4 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 16 | 1 | 15 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 16 | 1 | 0 | 1 |
G:=sub<GL(6,GF(17))| [0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,13,4,4,0,0,0,4,0,13,0,0,13,13,0,0,0,0,0,8,0,13],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,1,1,0,0,1,0,16,0,0,0,0,0,1,1,0,0,0,0,15,16],[13,0,0,0,0,0,0,4,0,0,0,0,0,0,10,7,7,10,0,0,7,11,6,13,0,0,4,0,0,10,0,0,13,4,16,13],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,4,0,0,0,0,0,0,13,0,4,0,0,0,0,13,13,0,0,0,0,0,4],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,16,16,0,0,0,16,0,1,0,0,1,1,0,0,0,0,0,15,0,1] >;
C42.48C23 in GAP, Magma, Sage, TeX
C_4^2._{48}C_2^3
% in TeX
G:=Group("C4^2.48C2^3");
// GroupNames label
G:=SmallGroup(128,2045);
// by ID
G=gap.SmallGroup(128,2045);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,112,253,456,758,723,352,346,248,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=1,c^2=a^2,d^2=e^2=b^2,a*b=b*a,c*a*c^-1=e*a*e^-1=a^-1,d*a*d^-1=a*b^2,c*b*c^-1=d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=b*c,e*c*e^-1=a^2*c,e*d*e^-1=b^2*d>;
// generators/relations
Export